C17	0.2946 (4)	0.2609 (3)	0.0810 (7)	0.0361
C18	0.3304 (3)	0.2976 (3)	0.0974 (7)	0.0360
C19	0.3783 (3)	0.2640 (3)	-0.0552 (8)	0.0353
C20	0.3427 (3)	0.2298 (3)	-0.0733 (8)	0.0327
C21	0.3563 (5)	0.3822 (4)	0.1536 (10)	0.0787
C22	0.2021 (3)	0.2387 (4)	0.0881 (9)	0.0502
C23	0.2839 (4)	0.1696 (4)	0.0275 (8)	0.0427
C24	0.3038 (3)	0.1217 (3)	-0.0180 (8)	0.0365
C25	0.2710 (4)	0.0841 (4)	-0.0275 (9)	0.0545
C26	0.2872 (5)	0.0406 (4)	-0.0729 (12)	0.0664
C27	0.3341 (6)	0.0335 (4)	-0.1059 (10)	0.0672
C28	0.3662 (4)	0.0710 (4)	-0.0942 (9)	0.0533
C29	0.3507 (3)	0.1149 (4)	-0.0499 (8)	0.0360
C30	0.2180 (4)	0.0891 (4)	0.0044 (11)	0.0813

Table 4. Selected geometric parameters (Å, °) for isomer (II)

		()	
C9-C12	1.57 (1)	C10-C18	1.52 (1)
C9-C17	1.57 (1)	C10-C19	1.50 (2)
C9-C20	1.55 (1)	C11-C12	1.40(1)
C9-C23	1.55 (1)	C17—C18	1.44 (1)
C10-C11	1.52 (2)	C19—C20	1.39 (1)
C12-C9-C17	104.9 (7)	C18-C10-C19	106.7 (8
C12-C9-C20	108.3 (7)	C10-C11-C12	112.0 (8
C12-C9-C23	109.9 (7)	C9-C12-C11	113.8 (8
C17-C9-C20	101.8 (7)	C9—C17—C18	110.6 (8
C17-C9-C23	115.0(7)	C10-C18-C17	113.7 (8
C20-C9-C23	116.1 (7)	C10-C19-C20	114.0 (8
C11-C10-C18	105.8 (8)	C9-C20-C19	112.7 (8
C11-C10-C19	107.6 (8)		

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, torsion angles and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71554 (47 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1064]

References

- Eliel, E. L. (1962). Stereochemistry of Carbon Compounds, pp. 156-178. New York: McGraw-Hill.
- Iwamura, H. (1973). J. Chem. Soc. Chem. Commun. p. 232.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Oki, M., Tanuma, T., Tanaka, Y. & Yamamoto, G. (1988). Bull. Chem. Soc. Jpn, 61, 4309-4314.
- Otsuka, S., Mitsuhashi, T. & Oki, M. (1980). Bull. Chem. Soc. Jpn, 53, 2095-2096.
- Otsuka, S., Yamamoto, G., Mitsuhashi, T. & Oki, M. (1979). Bull. Chem. Soc. Jpn, 52, 3663–3666.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Tanaka, T., Yonemoto, K., Nakai, Y., Yamamoto, G. & Oki, M. (1988). Bull. Chem. Soc. Jpn, 61, 3239-3248.
- Yamamoto, G. (1990). Chem. Lett. pp. 1373-1376.
- Yamamoto, G. (1991). Chem. Lett. pp. 741-744.
- Yamamoto, G., Nemoto, T. & Ohashi, Y. (1992). Bull. Chem. Soc. Jpn, 65, 1957–1966.
- Yamamoto, G. & Oki, M. (1975). Bull. Chem. Soc. Jpn, 48, 2592-2596.
- Yamamoto, G., Suzuki, M. & Oki, M. (1981). Angew. Chem. Int. Ed. Engl. 20, 607-608.
- Yonemoto, K., Kakizaki, F., Yamamoto, G., Nakamura, N. & Oki, M. (1985). Bull. Chem. Soc. Jpn, 58, 3346-3350.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 300-302

5,5-Diphenyl-1*H*,2*H*,5*H*-imidazo-[1,2-*a*]imidazole-3,6-dione

J. KAROLAK-WOJCIECHOWSKA

Institute of General and Ecological Chemistry, Technical University, 90-924 Łódź, Poland

K. KIEĆ-KONONOWICZ

Institute of Pharmaceutical Chemistry, Medical Academy, 31-065 Kraków, Poland

(Received 14 January 1993; accepted 27 July 1993)

Abstract

The conformation of the title molecule, $C_{17}H_{13}N_3O_2$, is generally similar to the conformations of analogous compounds. Both five-membered rings possess envelope conformations. The dihedral angle between the mean planes of these two rings equals 5.33 (8)°. The molecules in the crystal are joined by an intermolecular hydrogen bond N1—H4···O1(x, $\frac{1}{2} + y$, z) of 2.869 (3) Å.

Comment

Hydantoins are classified as compounds that influence the central nervous system (CNS) (Vida, 1977). The crystal and molecular structures of pharmacologically active hydantoins have been the subject of many papers (Heeg, Subramanian & Dryhurst, 1986; Camerman, Mastropaolo & Camerman, 1983; Uno

Fig. 1. Molecular structure and atomic numbering scheme for the title compound.

Acta Crystallographica Section C ISSN 0108-2701 ©1994

O1 O2 N1 C2 C3

N4 C5

C6 N7

C8

C11

C12 C13

C14

C15 C16

C21

C22

C23 C24 C25 C26

& Shimizu, 1980; Foresti, Sabatino, Riva di K Sanseverino, Fusco, Tosi & Tonani, 1988; Gallueci, Mathur & Schechter, 1992). Searching for new compounds with the potential to influence the CNS we have examined annelated 5,5-diphenyl-2-thiohydantoin (DPTH) (Kieć-Kononowicz, Zatorski & Karolak-Wojciechowska, 1989) and 5-substituted benzylidene-2-thiohydantoin derivatives (Kieć-Kononowicz & Karolak-Wojciechowska, 1992). The DPTH derivatives exhibit sedative properties while the analogous derivatives of 5-substituted benzylidene-2-thiohydantoin have analgetic, anxiolitic, antidepressant and anticonvulsant properties (Kolasa, Kleinrok, Pietrusiewicz, Czechowski, Kieć-Kononowicz & Zejc, 1989). The aim of this structure determination is to obtain three-dimensional data for the pharmacologically tested (inactive) derivative (I),

i.e. a hydantoin derivative with oxygen isosterically substituted by nitrogen (Lambert, Evrard & Durant, 1978). These data will be used for the calculation and comparison of the molecular electrostatic potential distribution round the active and inactive molecules. A similar procedure for phenylsuccinimides offered the possibility of predicting active compounds based on the calculations alone (Kwiatkowski & Karolak-Wojciechowska, 1993).

Experimental

Crystal data

$C_{17} G_{13} G_{13} G_{2}$
$M_r = 291.31$
Orthorhombic
P212121
<i>a</i> = 15.829 (4) Å
<i>b</i> = 10.290 (3) Å
c = 8.529 (5) Å
<i>V</i> = 1389.21 Å ³
Z = 4
$D_x = 1.393 \text{ Mg m}^{-3}$
$D_m = 1.389 \text{ Mg m}^{-3}$

Data collection

Kuma KM-4 diffractometer ω -2 θ scans				
Abcomption competion:				
Absorption correction.				
none				
1415 measured reflections				
1415 independent reflections				
1221 observed reflections				
$[F > 4\sigma(F)]$				

Cu $K\alpha$ radiation
λ = 1.5418 Å
Cell parameters from 25
reflections
$\theta = 10-60^{\circ}$
$\mu = 0.84 \text{ mm}^{-1}$
<i>T</i> = 293 K
Needles
$0.4 \times 0.2 \times 0.2$ mm
Colourless
Crystal source: crystallized
from CHCl ₃
0 559

 $\theta_{\max} = 55^{\circ}$ $h = 0 \rightarrow 19$ $k = 0 \rightarrow 12$ $l = 0 \rightarrow 8$ 2 standard reflections monitored every 50 reflections intensity variation: 2%

Refinement	
------------	--

Refinement on F	$\Delta \rho_{\rm max} = 0.122 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.032	$\Delta \rho_{\rm min} = -0.121 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.036	Extinction correction:
S = 1.17	empirical
1221 reflections	Extinction coefficient:
239 parameters	0.01137
Only coordinates of H atoms refined	Atomic scattering fac- tors from SHELXTL/PC
$w = 1/[\sigma^2(F) + 0.0117F^2]$	(Sheldrick, 1990)
$(\Delta/\sigma)_{\rm max} = 0.01$	

The structure was solved by direct methods using *SHELXTL/PC* (Sheldrick, 1990). All calculations were performed using the *SHELXTL/PC* system.

Table	1. Fractional	atomic	coordinate	es and	l equiva	lent
	isotropic di	splaceme	ent parame	eters (1	Ų)	

$$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	v	z	U_{eq}
0.5227 (1)	0.3065 (2)	0.1175 (3)	0.0480 (4)
0.2294 (1)	0.5428 (2)	-0.1117(3)	0.0570 (4)
0.3639(1)	0.6771 (2)	0.1717 (3)	0.045 (1)
0.2882 (2)	0.6960 (3)	0.0790 (4)	0.051 (1)
0.2802 (1)	0.5700 (3)	-0.0126 (3)	0.0430 (4)
0.3456(1)	0.4934 (2)	0.0426 (2)	0.0350 (4)
0.3828 (1)	0.3653 (2)	0.0142 (3)	0.0340 (4)
0.4658 (1)	0.3863 (3)	0.1146 (3)	0.0360 (4)
0.4652 (1)	0.5026 (2)	0.1914 (3)	0.0410 (4)
0.3955 (1)	0.5613 (2)	0.1455 (3)	0.0350 (4)
0.4069(1)	0.3457 (3)	-0.1572 (3)	0.0370 (4)
0.4185 (2)	0.4516 (3)	-0.2563 (4)	0.049(1)
0.4438 (2)	0.4324 (4)	-0.4113 (4)	0.060(1)
0.4557 (2)	0.3075 (4)	-0.4661(4)	0.066(1)
0.4440 (2)	0.2031 (4)	-0.3697 (4)	0.065(1)
0.4204 (2)	0.2215 (3)	-0.2138 (4)	0.049(1)
0.3280(1)	0.2567 (3)	0.0831 (3)	0.0380 (4)
0.3632 (2)	0.1538 (3)	0.1656 (4)	0.052(1)
0.3117 (2)	0.0592 (3)	0.2314 (5)	0.068(1)
0.2258 (2)	0.0653 (4)	0.2144 (5)	0.076(1)
0.1902 (2)	0.1661 (4)	0.1303 (5)	0.070(1)
0.2407 (2)	0.2611 (3)	0.0627 (4)	0.054(1)

Table 2. Selected geometric parameters (Å, °)

O1-C6	1.219 (3)	N4—C8	1.372 (3)
O2—C3	1.200 (3)	C5—C6	1.583 (3)
N1-C2	1.449 (4)	C5-C11	1.524 (4)
N1-C8	1.311 (3)	C5-C21	1.532 (3)
C2-C3	1.519 (4)	C6—N7	1.364 (4)
C3-N4	1.384 (3)	N7-C8	1.317 (3)
N4—C5	1.464 (3)	C(Ph)-C(Ph) av.	1.385 (5)
C2-N1-C8	110.1 (2)	O1-C6-C5	122.2 (2)
N1-C2-C3	103.6 (2)	O1-C6-N7	125.9 (2)
O2-C3-C2	128.1 (2)	C5-C6-N7	112.0(2)
O2-C3-N4	127.5 (2)	C6—N7—C8	105.4 (2)
C2-C3-N4	104.4 (2)	N1-C8-N4	110.6 (2)
C3-N4-C5	139.3 (2)	N1-C8-N7	133.3 (2)
C3-N4-C8	111.0 (2)	N4—C8—N7	116.0 (2)
C5-N4-C8	109.4 (2)	C5C11C12	120.8 (2)
N4-C5-C6	97.0 (2)	C5-C11-C16	119.9 (2)
N4-C5-C11	112.2 (2)	C5-C21-C22	121.6 (2)
N4-C5-C21	111.5 (2)	C5-C21-C26	119.3 (2)
C6-C5-C11	109.2 (2)	C22-C21-C26	119.1 (3)
C6-C5-C21	111.2 (2)	C(Ph) - C(Ph) - C(Ph)	av. 120.0 (3)
C11-C5-C21	114.4 (2)		

The crystallographic investigations were supported by grant No. 303029101 from the Polish State Committee for Scientific Research.

Lists of structure factors, anisotropic displacement parameters and Hatom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71528 (7 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1033]

References

- Camerman, A., Mastropaolo, D. & Camerman, N. (1983). J. Am. Chem. Soc. 105, 1584–1586.
- Foresti, E., Sabatino, P., Riva di Sanseverino, L., Fusco, R., Tosi, C. & Tonani, R. (1988). Acta Cryst. B44, 307-315.
- Gallucci, J., Mathur, N. & Schechter, H. (1992). Acta Cryst. C48, 477-480.
- Heeg, M. J., Subramanian, P. & Dryhurst, G. (1986). Acta Cryst. C42, 747-759.
- Kieć-Kononowicz, K., Zatorski, A. & Karolak-Wojciechowska, J. (1989). Phosphorus Sulfur Silicon, 42, 191–199.
- Kieć-Kononowicz, K. & Karolak-Wojciechowska, J. (1992). Phosphorus Sulfur Silicon, 73, 235–248.
- Kolasa, K., Kleinrok, Z., Pietrusiewicz, T., Czechowski, G., Kieć-Kononowicz, K. & Zejc, A. (1989). Pol. J. Pharmacol. Pharm. 41, 377-383.
- Kwiatkowski, W. & Karolak-Wojciechowska, J. (1993). SAR QSAR Environ. Res. 1, 233-244.
- Lambert, P., Evrard, G. & Durant, F. (1978). Acta Cryst. B43, 2654-2655.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Uno, T. & Shimizu, N. (1980). Acta Cryst. B36, 2794-2796.
- Vida, J. A. (1977). Anticonvulsants, in Medicinal Chemistry, Vol. 15, edited by G. De Stevens. New York: Academic Press.

Acta Cryst. (1994). C50, 302-304

Structure of OPC-21268

Masaru Kido,* Kazumi Kondo, Hiroshi Yamashita and Hidenori Ogawa

Second Tokushima Institute of New Drug Research, Otsuka Pharmaceutical Company, Tokushima 771-01, Japan

(Received 21 September 1992; accepted 9 July 1993)

Abstract

The molecule of OPC-21268, N-(4-{[4-(2-0x0-1,2,3,4-tetrahydroquinolin-1-yl)piperidino]carbonyl}phenoxypropyl)acetamide, C₂₆H₃₁N₃O₄, has an extended conformation through the 3,4-dihydro-2(1*H*)quinolone, piperidine, the phenyl rings and the acetamide side chain. The structure is stabilized in the crystal by an N—H···O intermolecular hydrogen bond [2.883 (4) Å].

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

OPC-21268 (1), synthesized by Ogawa *et al.* (1989), has been identified as an orally effective non-peptide vasopressin-V₁-receptor antagonist (Yamamura *et al.*, 1991) and is a potentially useful vasodilator. The study of its conformation might be useful in developing pharmacophores for the vasopressin-V₁receptor.

We have determined the crystal structure of carteolol, a β -adrenergic blocking drug, which has a 3,4-dihydro-2(1*H*)-quinolone ring. The shortest C—C single bond of this ring was found to be 1.40 Å and the ring was planar (Kido, Nakagawa, Fujiwara & Tomita, 1981). It was considered that this abnormal structure was caused by either disordering or high thermal motion. We are interested in the ring structure of OPC-21268 as it is similar to that of carteolol.

The molecule has an extended conformation; distances between the N atoms are N(1)…N(2) 4.262 (4) and N(2)…N(3) 11.208 (5) Å. The piperidine ring has a perfect chair form with a syn conformation, χ [C(2)—N(1)—C(11)—C(12)] = 66.2 (4)°, against 3,4-dihydro-2(1*H*)-quinolone. There is an intermolecular hydrogen bond between NH of the terminal amide group and C=O of the benzoyl group in the middle of the molecule. This hydrogen bond may reduce the flexibility of the long molecule. The 3,4dihydro-2(1*H*)-quinolone ring is clearly non-planar and no abnormal bond distances or angles were found.

Fig. 1. View of OPC-21268 projected along the *a* axis showing the labeling of the non-H atoms. Thermal ellipsoids are shown at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.

Acta Crystallographica Section C ISSN 0108-2701 © 1994